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Abstract. We formulate the problem of finding classes of kinetic dependencies in irreversible thermody-
namic and microeconomic systems for which minimal dissipation processes belong to the same type. We
show that this problem is an inverse optimal control problem and solve it. The commonality of this problem
in irreversible thermodynamics and microeconomics is emphasized.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics — 89.65.Gh Economics; econophysics,

financial markets, business and management

1 Introduction and problem formulation

Analogy between reversible processes in thermody-
namic and microeconomic systems has been long known
[1-3,5,11]. This analogy is based on the fact that both
systems include large numbers of elementary subsystems
(molecules, economic agents), which are not directly con-
trollable. Control here can only be applied on the macro
level. We shall call them macro controllable systems [4].

The Finite Time Thermodynamics (FTT) ([6-9]) stud-
ies limiting possibilities of thermodynamic systems sub-
ject to condition that the average rates of some flows are
given. These problems can be roughly divided into three
classes:

(A) the problems of limiting rate of objective flux (limiting
power of heat engine, limiting productivity of thermal
processes of gas and liquid separation, etc.),

(B) the problem of minimal energy use for given rate of
objective flow (limiting efficiency of heat engine with
given power, minimal heat used for separation with
given rate, etc.),

(C) the problems of constructing realizability areas in a
state space where coordinates are the average rates of
flows in the system.

Solutions of FTT problems (B), (C) are the minimal
dissipation processes [14], defined as processes with min-
imal entropy production subject to given rates of flows.
The conditions of minimal dissipation jointly with thermo-
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dynamic balances on mass, energy and entropy, determine
these processes.
Similar problems arise in microeconomics:

(A)the problem of limiting rate of capital extraction
from the system, subject to some constraints of its
structure,

(B) the problem of maximal norm of profit subject to given
rate of capital extraction,

(C) the problem of construction of realizability areas in
the space of flows of capital and goods.

The role of entropy here is played by the prosperity func-
tion. One of the proofs of its existence is based on Ville’s
axiom [10]. These problems were considered in [4], where
the notions of system’s prosperity and capital dissipation
were introduced. The former is defined as the amount of
capital that can be potentially extracted from the system,
and the latter as the rate of reduction in profitability. It
was also shown there that microeconomic balances on as-
sets and capital and on the prosperity jointly with the
conditions of minimal dissipation determine the bound-
ary of the realizability area of microeconomic systems.

In their turn, the conditions of minimal dissipation are
determined by the system’s kinetics, that is, by the depen-
dence of the flows of mass, energy and assets between its
subsystems on the driving forces (differences in tempera-
tures, concentrations, asset price estimates, etc). Different
kinetics can correspond to the same characteristic solution
of minimal dissipation problem. For example, the condi-
tion of constant temperature ratio of contacting subsys-
tems in minimal dissipation process holds for a number of
different laws of heat transfer. This leads to the problem
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of finding classes of kinetic dependencies, all members of
which have minimal dissipation processes that belong to
the same class. We shall call it classification problem with
respect to conditions of minimal dissipation.

2 Dissipation in thermodynamic
and microeconomic systems

A thermodynamic system and a microeconomic system
both are described by variables that can be conveniently
divided into two groups - extensive and intensive. If two
systems are combined into a new system then the exten-
sive variables of combined system are the sums of the ex-
tensive variables of the initial systems. For instance, when
two identical systems are combined the volume of the re-
sulting system is twice the initial system’s volume. Cap-
ital and asset inventories in microeconomic systems are
summed similarly. Intensive variables do not change when
similar systems are combined. For instance, is two systems
with identical temperatures are combined then the com-
bined system’s temperature is the same. The asset price
estimates in microeconomics behave similarly.

Microeconomic subsystem (agent) with asset inventory
N estimates asset price p as the derivative of its prosperity
function S on N [2,4]

P=oN

If contact between two microeconomic agents with differ-
ent values of intensive variables is established then they
trade and exchange flow arise. Asset price estimate p plays
here the same role as the temperature in thermodynam-
ics. The flow of asset depends on the difference between
the trading price and the asset price estimate in the same
way the heat flow between two bodies depends on their
temperatures’ difference.

Thus, non-zero difference between agent’s asset price
estimate and trading price is necessary to have non-zero
rates of asset flows. In thermodynamics dissipation is min-
imal in reversible processes with infinitely small rates of
exchange flows. Similarly, trading costs in microeconomic
systems are minimal where exchange is reversible and ex-
change rates are infinitely small. If exchange rates’ are
finite then trading is conducted irreversibly and trading
costs exceed the minimal-possible ones. This additional
cost is called capital dissipation. They are similar to en-
tropy production in thermodynamics. These and other
analogies between irreversible processes in thermodynam-
ics and microeconomics are described in details in [2].

If contact is established between two subsystems with
different values of intensive variables then exchange flows
occur. One can control these flows by controlling the val-
ues of subsystems’ intensive variables. It is useful to single
out the class of subsystems whose intensive variables are
controllable. Heat engine’s working body with controllable
volume (and therefore controllable temperature) belongs
to this class. Economic intermediaries, who set optimal
(from their viewpoint) prices, also belong to this class.
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We shall call such systems active. Passive systems differ
from active ones because their intensive variables change
only as a result of changes to their extensive variables.

3 Problem formulation

We denote all extensive variables and the intensive vari-
ables of the passive systems as z and the intensive vari-
ables of the active systems as u. Variables u are the prob-
lem’s control variables. The dependence of rate of flows on
the driving forces is determined by kinetics of the process
and is described by the function n(z,w). This function
determines conditions of minimal dissipation [14]

(1)

where n,, n, denote partial derivatives of the flow n on
the corresponding variables.

These conditions are obtained by solving optimal con-
trol problem where dissipation is minimized subject to
given average rates of exchange processes in the system.
Any minimal dissipation process must obey these condi-
tions.

Additional constrains can be imposed on the func-
tion n. For example, the following condition can be used

(2)

If the difference x —u changes sign then the flow n changes
sign also.

A simple example of obtaining these conditions of op-
timality is given in Section 4.1.

Suppose that the conditions of minimal dissipation (1)
can be written in the following form

F (n(z,u),x,u,ng,n,) = const.,

n(z,u) =0 for z=u.

3)

where ¢ is some predefined function. In its turn, this func-
tion can depend on n(z,u). We denote optimal (minimal
dissipation) processes and their parameters with super-
script .

The aim of this paper is to find the conditions that
must be imposed on the kinetic function n(z,u) to guar-
antee that its conditions of minimal dissipation (1) have
the form (3) for a given function ¢.

First we will describe the general schema of solution
of the described problem. It is based on the Statement 1:
The solution of minimal dissipation problem obeys condi-
tion (8) if and only if function n(x,u) is a solution of the
equation

o(x*, u*) = const.,

Fr ¢
= 4)
u Pu
Indeed, from the condition (3) follows that
prdr = —py,du,
and from (3) it follows that

F.dx = —F,du,
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therefore (4) holds. It is clear that the inverse is also true
—if (1) holds and (4) does not, then the condition (3) is
also violated.

The left hand side of the equality (4) depends on the
form of the function n and its partial derivatives and can
be used to derive partial differential equation for the func-
tion n. Its general solution gives the class of dependen-
cies. We will consider a number of examples of solution of
this classification problem for particular systems, which
demonstrate the class of problems considered is general
enough.

4 Thermodynamic systems

It turned out that for many, but not all, minimal dissipa-
tion processes in FTT the entropy production is constant
(time and space independent). We will derive conditions
when minimal dissipation thermodynamic process corre-
sponds to constant entropy production. We consider heat
exchange first and then generalize the obtained results for
a wider class of thermodynamic processes.

4.1 Irreversible heat exchange

Minimal dissipation heat exchange process is defined as a
heat exchange during which given amount of heat @ is re-
moved from a body with the temperature T'(¢) and finite
heat capacity in given time 7 in such a fashion that the
resulting increase of system’s entropy S is minimal. Tem-
perature of the coolant Ty(t) is the control variable. The
dependence of the heat flow n(Ty,T) between the body
that is cooled and the coolant on their temperatures T'
and Ty is called the law of heat transfer.
Formally the problem is stated as

AS = / n(To,T)(1/To — 1/T)dt — min
0
subject to constraints

/T n(TOa T)dt = Qa
0

ar

C% = —n(TO,T), T(O) = To.

where C' is the heat capacity of body that is being cooled.
Because T is a monotonic function and we can replace

t as independent variable with 7. We get dt = —%dT

and the minimal dissipation problem takes the form

— — — | dT" — min
/To (T T0>

subject to given duration of the process T

T(r) C
— ——dT =T.
/,T() n(T(J?T)
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The Lagrange function of the transformed problem has

the form
T(r)
L:/‘ (l_i_A_E;JdT
To T Ty n(To, T)

A here is a Lagrange multiplier, that is independent on 7.
The conditions of optimality for the transformed prob-
lem are reduced to the condition that the derivative of the
integrand of this Lagrange function on 7T is equal zero on
the optimal solution for all T'. That is, the conditions (1)
here take the following form [12]
T2  0On
—— = const.,

’n,2(T07 T) aTO 7’L(T‘07 To) =0. (5)
Condition of constant temperature difference
What is required from the law of heat transfer n(Ty,T),
to guarantee that the condition (3) with the function
©(To,T) = To — T holds? That is, for which laws of heat
transfer the condition of minimal dissipation corresponds
to constancy of the temperature differences? The answer
to this question is given by the Statement 2: The condi-
tion of minimal dissipation corresponds to constant tem-
perature difference for such and only such laws of heat
transfer that can be represented in the following form

M(Ty — T)T?

M%JU:1+R@MﬂQ—Ty ()

The proof of this and other statements are given in Ap-
pendix A.

The following law of heat transfer gives an example of
heat transfer law with temperature dependent heat trans-
fer coefficient that obeys (6)

n(To, T) = aT*(Ty — T).

4.2 When minimal dissipation thermodynamic process
corresponds to constant entropy production?

The minimal dissipation problem for thermodynamic pro-
cess with the scalar variable x has the following form:

_*l Tn:cu x,u)dt — min
5 — /O (2, ) R(a, u)dt (7)

T u

subject to constraints

T = f(zau)v :L'(O> = Zo, (8)

/T n(z,u)dt = AN. 9)
0

Here 7 is the entropy production. The condition (8) char-
acterizes the rate of change of the intensive variable of
the system (temperature, pressure, chemical potential),
R(x,u) is the driving force of the process and n(z,u) is
the flow. The condition (9) determines the average rate of
the flow. The derivation of the necessary condition of opti-
mality for the problem (7)—(9) is similar to the derivations
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in Section 3.1. The conditions of optimality here have the
following form [14]

n?(z, u)

F = p(z,u) = R, = const. (10)

Lz
It is required to determine for which dependencies n(z, u)
the entropy production is constant on the optimal solu-
tion, that is, where

o(x,u) = n(x,u)R(r,u) = const.

Thus, for this function ¢ we seek conditions on the ki-
netic function n(z, u) that guarantee that on minimal dis-
sipation processes (3) with this ¢ holds. After taking into
account (4) we obtain

2”_1 + Rz Mg

n_ Ry ny o BnetnRy (11)
2— + - —

n R, Ny

The condition (11) singles out the class of minimal dis-
sipation processes for which entropy production is inde-
pendent on time and length. It is clear that this condition
holds for both Newton and Fourier heat transfers.

It is been suggested that entropy production in min-
imal dissipation processes is always constant. From the
condition (11) it is clear that for heat transfer this as-
sumption is true for many but not all laws of heat transfer.

5 Microeconomic systems

Consider a market when one asset is traded and where
only one intermediary (monopolist) buys and resells this
commodity. This intermediary chooses the price ¢(t) to
minimize the price it pays (or to maximize the price
is received) to acquire the inventory AN in the given
period of time 7. The dependence n(x,u) describes the
demand/supply (for buying/selling) function. The asset
price estimate p is the minimal price for which the flow of
purchasing is zero. The condition of minimal capital dissi-
pation (3) can be interpreted as the condition of minimal
trading costs. It holds if the trading costs are minimal
subject to the given average rates of trading.

5.1 Conditions of constancy of optimal premium

Formally the problem of optimal trading has the form

T

I= /n(c,p)cdt — min

0

subject to constraints

T

/n(c,p)dt = AN,
0

n > 0,
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N = —n(c,p), N(0) = Np.

Here ¢(t) is the trading price and p(N) is a given func-
tion. The condition of optimality of this problem has the
following form [13]

1 on
= ——— — = counst,,

= =0 f
2(p.0) B n(c,p) =0 for

c=p.

(12)
It’s derivation is very similar to derivation of conditions of
optimality for heat transfer in Section 4.1. It is clear that
if n(p, ¢) leads to the condition of optimality

(¢, p) = ¢ — p = const. (13)
then it is guaranteed that the optimal premium (the differ-
ence between offered price and price estimate 6 = ¢(t) —p)
is constant and time-independent.

The condition (12) is identical to (21) and the solu-
tion of the problem of finding the optimal constant pre-
mium price is identical to the solution of the problem of
optimal irreversible heat exchange up to multiplier 1/72.

Therefore, the class of function n(c, p) that guarantees the
fulfilment of (13) has the form

M(c —p)
n(c,p) = . 14
(@) 1+ R(p)M(c - p) (1)
The condition (14) singles out the dependencies of flows
on trading prices and asset price estimates for which the
optimal premium is constant.
The expression (14) can be rewritten as

p(6)

MO = T Ry
Since
/n(c,p)dt = AN,
0
we get
AN
pu(d) = dt (15)

I T R

This condition determines the premium 4.
The process’s irreversibility is characterized by the in-
tegral

AS = /(5n(c,p)dt = 0AN.
0

The average dissipation (trading costs) is

AS  JAN
=" = : (16)
T T

The equalities (15), (16) determine the irreversibility
of the process for any function n(c,p), which has the

form (14).
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5.2 Conditions of constancy of the optimal flow
of goods

The condition of optimality for trading (12) leads to the
condition of constancy of the flow n(p,c) on the optimal
solution ¢*(p) if the left hand side of the equality (12)
depends on n only

E(p,¢) = ¢(n(p; c)),

where ¢ is an arbitrary function or, which is the same,
when n. is a function of n

ne(p,c*) = ¢(n(p,c*)) Vp.

The Statement 3 holds that: The minimal cost of trading
corresponds to a constant time-independent flow of com-
modity if and only if the demand function can be repre-
sented as

(17)

n(c,p) = (¢ —p)M(c - p). (18)

Here M is an arbitrary nonnegative function of price dif-
ference.

The optimal dependence ¢*(p) is determined by the
condition

(19)

Example
Suppose the dependence n(c,p) is defined as

n(e,p) = a - arctg(c — p), for ¢> p.
Because this expression obeys the condition (18), we ob-
tain the following dependence of the optimal price ¢*(t)

on time AN
*(t) = p(N* tg——
c*(t) = p(N™) + 9

here AN
N*(t) = Ng — —t.
T

The optimal flow of commodity is constant and equal
to AN,
T

Conclusion

In this paper the problem of thermodynamic systems’ clas-
sification on the basis of the type of their minimal dissipa-
tion processes is formulated and solved. The minimal dis-
sipation processes correspond to minimal-possible energy
consumption and single out the boundary of thermody-
namically feasible processes — realizability area. Minimal
dissipation processes are obtained by solving optimal con-
trol problem for given kinetics. In this paper the inverse
problem of finding kinetics using given conditions of opti-
mality is solved.

The class of processes where minimal dissipation cor-
responds to a constant rate of entropy production is con-
structed.
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Similar problems are solved for microeconomic sys-
tems. Capital dissipation here describes dissipation and
can be interpreted as trade cost resulted from finite rate
of trade. The results obtained in this paper allow us to
find the class of demand functions for which optimal trad-
ing obeys some a priory given condition (e.g. the condition
of constant optimal premium, that is, constant difference
between equilibrium price and trading price).

The obtained results allow us to divide thermody-
namic and microeconomic processes into classes of equiva-
lent processes that have common-type minimal dissipation
processes.

This work is supported by RFFI (grant 01-01-00020 and 02-
06-80445), the School of Finance and Economics, UTS, AC3
and the Capital Markets CRC.

Appendix
A.1 Proof of the Statement 2

Suppose that the function m(Tp, T) is defined as

m(m 1) = "), (20)

Suppose m and n(Tp,T) are continuously differentiable.
Substitution into (5) yields

1 om
F=— - = t. Ty, 1) =0 21
T ) ory sty T, 7o) (21)
and E
T _¥$T _ ~1, (22)
FTD P,
or
Fr + Fr, = 0. (23)
Let us obtain Fr and Fr,
= 1 Pm_ 2 om dm
T = m2(To,T) 0T,0T ~ m3(1o,T) 0T 0Tp°’
(24)
Fr — 1 *m_ 2 Om Im
To = m2(To,T) 0To0To ~ m3(To,T) 0To 010
After substitution (24) into (23) we obtain
MTyT + MTyTe = EmTO (mr, +mr),
or 5
é)—TO(mT +my,) = —mg,(mr +ma,). (25)

Formula (25) can be rewritten as

6—T0(mT° +mr)

mr, + mr m

mTD

)

or

i1n|m +m |*2iln|m|
ar, T T T, '
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Thus
0 mr + mr,
In|l———2

— = 0.
T,

— (26)

From (26) it follows that the expression under the deriva-
tive is an arbitrary continuous function of T’

mrp + mr,
In|l——~2

L —€(1)
or
MLy, (27)

We will solve the equation (27) using the method of char-
acteristics

The solutions of these equations are

To(t)zt-i-’l“l, T(t):t—f—?“g,

mﬂtwwm2¢%<%)f@+w%
1

= m(t) = [ ft+ra)dt+ ¢’

(28)

where c is a constant, f(t) is a continuous function. After
taking into account (28), eliminating ¢ and replacing dt
with dT', we obtain its common solution in the following
form

1

m(To,T) = [ F(M)dT + uw(To — T)’

(29)

where f and p are arbitrary functions. We took into ac-
count here that because of (28) the difference (Tp —T") and
any function of it are constant.

Suppose the function u(Ty — T') has the form

1

wTo—T) = MTo—T)

Since functions f and g in (28) are arbitrary functions,

this solution can be rewritten in equivalent form

_ M(To - T)
1+ R(T)M(To—T)’

m(To, T) (30)

where R(T) = [ f(T)dT is differentiable on all of its ar-
guments.

In order to take into account the condition m(Ty,T) =
0 for Ty = T, we impose additional condition M (0) = 0
on the function M (To—T'). After taking into account (20)
and (30) we obtain the dependence n(Ty, T') of the general
form (6).
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A.2 Proof of the Statement 3

After taking into account (4) from the condition (17) we
obtain
Nee M 0

=— = 1
Np 8cn

Bel— 0= 2 p(p),
p

Teep np
where r is an arbitrary function. This yields the following

equation, which determines the form of the function n,

ne—rpn, =0, n(p,c)=0 for p=c. (31)
The equation of characteristic is
¢c=1, p=-—-r(p).
Thus
c(t)=co+t, plp)=t—to, (32)
where u(p) is an arbitrary differentiable function such that
dp 1
dp r(p)

Elimination of ¢ from (32) yields the first integral of the
equation (31)

w(p) — ¢ =ty — co = const.,
therefore the general solution is

n(c,p) = M[u(p) — .

After taking into account that n(p,c¢) = 0 for ¢ = p we
obtain a class of demand function (18), for which the flow
asset is constant at the optimal solution.
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